

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UTILIZING IXP1200 HARDWARE AND
SOFTWARE FOR PACKET FILTERING

by

Jeffery L. Lindholm

December 2004

 Thesis Advisor: Su Wen
 Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Utilizing IXP1200 Hardware and Software for Packet Filtering
6. AUTHOR(S) Jeffery L. Lindholm

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
As network processors have advanced in speed and efficiency they have become more

and more complex in both hardware and software configurations. Intel’s IXP1200 is one of
these new network processors that has been given to different universities worldwide to
conduct research on.

The goal of this thesis is to take the first step in starting that research by providing a
stable system that can provide a reliable platform for further research. This thesis introduces
the fundamental hardware of Intel’s IXP1200 and what it takes to install both hardware and
software using both Windows 2000 and Linux 7.2 as the operating system in support for the
IXP1200.
This thesis will provide information on the installation of hardware and software configuration
for the IXP1200 including Intel’s Software Development Kit (SDK). Upon completion this
platform can then be used to conduct further research in the development of the IXP1200
network processor. It provides a hardware and software installation checklist and
documentations of problems encountered and recommendations for their resolution. Along
with providing an example of using preexisting code that has been modified to filter packets of
TCP or UDP to different ports.

15. NUMBER OF
PAGES 79

14. SUBJECT TERMS
IXP1200 ACE MicroACE, Intel IXA, Microengine

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UTILIZING IXP1200 HARDWARE AND SOFTWARE FOR PACKET
FILTERING

Jeffery L. Lindholm

Lieutenant, United States Navy
B.S. Computer Science, Hawaii Pacific University, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Jeffery L. Lindholm

Approved by: Su Wen

Thesis Advisor

John Gibson
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As network processors have advanced in speed and efficiency they have also

become more complex in both hardware and software configurations. Intel’s IXP1200 is

one of these new network processors that has been given to different universities

worldwide to conduct research with.

The objective of this thesis is to take the first step in beginning the research by

providing a stable system that can provide a reliable platform for further research. This

thesis introduces the fundamental hardware of Intel’s IXP1200 and the requirements for

installation of both hardware and software using Windows 2000 and Linux 7.2 as the

operating system in support for the IXP1200.

This thesis will provide information on the installation of hardware and software

configuration for the IXP1200 including Intel’s Software Development Kit (SDK). Upon

completion, this platform will be able to conduct further research in the development of

the IXP1200 network processor. It provides a hardware and software installation

checklist along with documentations of problems encountered and recommendations for

their resolution. Included is an example using preexisting code that has been modified to

filter packets of TCP or UDP to different ports.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. BACKGROUND ..1
A. THE EVOLUTION OF NETWORK PROCESSORS1
B. THE INTEL IXP1200 NETWORK PROCESSOR......................................3

1. Memory...4
a. SDRAM..4
b. SRAM ..5

2. StrongARM Core Processor ...5
3. Microengines ..5
4. IX Bus..6
5. Fast Bus Interface (FBI)..6
6. Host Computer ...6

C. SUMMARY ..7

II. INTEL’S SOFTWARE DEVELOPMENT KIT AND INSTALLATION..............9
A. BUILD SETTINGS..11
B. DEBUGGING CODE ..15
C. INSTALLATION OF IXP1200 CARD AND SOFTWARE17
D. SUMMARY ..17

III. PROGRAMMING PACKET FILTER ON IXP1200...19
A. DESIGNING A PACKET FILTER APPLICATION19
B. MPACKETS AND MEDIA ACCESS CONTROLLER21
C. PROCESSING PACKETS..22

1. Dispatch Loops ...22
D. FILTERING TCP AND UDP ...24
E. COMPILING AND RUNNING CODE ...26

1. Compiling the Microcode Source Files ..26
2. Compiling Core Component of MicroACE.....................................26
3. Running the Application ...27

F. SUMMARY ..28

IV. CONCLUSIONS AND RECOMMENDATION...29

APPENDIX A. TCP AND UDP PACKET FILTER ...33

APPENDIX B. INSTALLATION OF HARDWARE AND SOFTWARE..............43
A. SYSTEM REQUIREMENTS ...43
B. INSTALLATION OF WINDOWS 2000..43
C. INSTALLATION OF RED HAT 7.2 FROM CD ROM44
D. UPGRADING RED HAT LINUX KERNEL..48
E. INSTALL IXA SDK WORKBENCH FOR WINDOWS...........................49
F. CYGWIN SETUP ..53
G. INSTALLING OF IXP1200 CARD ...56
H. INSTALLING LINUX STRONGARM DEVELOPMENT.......................59

 viii

I. ENP-2505 SOFTWARE INSTALLATION...61
J. BOOTING UP IXP1200 CARD..61

LIST OF REFERENCES..63

INITIAL DISTRIBUTION LIST ...65

 ix

LIST OF FIGURES

Figure 1. Intel IXP1200 Diagram (From Ref 11)..4
Figure 2. IXP1200 Workbench GUI (Ref 18)...10
Figure 3. Project Workspace ...11
Figure 4. General Build Settings ...12
Figure 5. Build Settings Assembler...13
Figure 6. Build Setting Linker...14
Figure 7. Thread View...15
Figure 8. Thread and Queue History Window ..15
Figure 9. Command Line...16
Figure 10. Data Watch...16
Figure 11. Flow chart for Mpackets (From Ref 1) ..22
Figure 12. User and Passwords ...44
Figure 13. Setup Icon ..49
Figure 14. Information Window..50
Figure 15. Information Window..50
Figure 16. License Agreement ..50
Figure 17. Information on Path ...50
Figure 18. Select Development Kit Components..51
Figure 19. Select Program Folder..51
Figure 20. Question ...51
Figure 21. Information ..52
Figure 22. Question ...52
Figure 23. Enter Password...52
Figure 24. Question ...52
Figure 25. Information ..52
Figure 26. Information ..53
Figure 27. Cygwin Install..53
Figure 28. Setup Options...53
Figure 29. Directory Location of Cygwin ...53
Figure 30. Setup User Options ..54
Figure 31. Component Options ...54
Figure 32. Icon Options...55
Figure 33. Installation Complete ...55
Figure 34. IXP1200 Card Inspection...56
Figure 35. Mother Board ...57
Figure 36. IXP1200 Three Pin Cable Connector ..57
Figure 37. IXP1200 Card Installed..58
Figure 38. Connection of Serial Cable ..59

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

During the course of my thesis work, there were many people who were

instrumental in helping me. Without their guidance, help and patience, I would have

never been able to accomplish this thesis. I would like to take this opportunity to

acknowledge some of them.

I would like to thank my thesis advisors, Professor Win Su and Professor John

Gibson, both of whom were driving factors in the successful completion of this thesis.

Professor Win Su introduced me to Intel’s IXP1200 that sparked my interest into the

possibility of the card. Professor John Gibson was instrumental as an instructor in many

of my classes that led to the completion of this thesis.

I must give immense thanks to my wife, Regina and our children Stefanie,

Trenton, and Andrew. Their love and support during long nights of work away at the lab

was of immeasurable value to me.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. BACKGROUND

A. THE EVOLUTION OF NETWORK PROCESSORS
Up until the late 1990’s, most network routers were based on architecture similar

to a personal computer. The central processing unit (CPU) performed the basic network

layer processing tasks: access control filtering, forwarding table lookups, and routing

updates. The central processor received instructions from the router’s operating system

that ran in random access memory (RAM), along with basic instructions that were stored

in read only memory (ROM). The advantage to this architecture was that all instructions

were stored in software; therefore, new features could be added simply by upgrading the

systems software, much like in a PC. Routers could also be designed with additional

interfaces that supported High Speed Serial Interface (HSSI), without having to touch the

basic processor architecture. For vendors this meant that their basic router architecture

could support a variety of configurations as well as different versions of the same basic

operating system. Therefore, vendors were able to quickly develop new products with a

reduced time-to-market and make routine changes at a low cost to support a small

segment of the market. [1, 2]

A perfect example of this approach is the Cisco 2500 product line. This software-

based router uses a central processor unit to perform routing instructions based on

software configurations stored in nonvolatile RAM. The Cisco 2500 series is available in

a variety of specialized hardware configurations depending on specific application

requirements, such as, multiple or single serial ports, multiple or single attachment unit

interface (AUI) ports, or multiple or single Token Ring ports. On the software side,

dozens of different software versions are available to support highly specific individual

requirements. [2]

The drawback to software-based routers is their limited ability of scale to support

the demands of higher bandwidth and additional features. For example, most software-

based routers currently available are only capable of supporting wire-speed throughput of

less than a single 155 Mbps, or in some extreme cases, up to a single 622 Mbps. When

these same routers are then tasked to perform complex traffic filtering, policy based

2

routing, or collection of traffic statistics, their performance suffers and their maximum

throughput is greatly reduces. [6]

The use of Application Specific Integrated Circuits (ASIC) was a major paradigm

shift for hardware manufacturers in the production of network devices. Rather than using

software-based processing and improving performance by increasing the speed of the

central processor, hardware manufacturers discovered they could achieve tremendous

performance improvements by creating specialized chips. These ASIC chips are

manufactured with embedded instructions, and therefore, perform forwarding decisions

directly in hardware, which improves the overall performance. [11]

While ASIC-based switching has allowed for a new generation of very high-speed

routers and switches, there is a downside to this approach. Once instructions or logic has

been embedded into silicon, it is difficult to change them to add new features or to

improve performance. This means that manufacturers must replace the ASIC chips to

enable new functionality, unlike traditional software-based routers and switches in which

new features can be added by simply upgrading the operating system. Another problem

is that errors in the ASIC design during product development can result in substantial

time-to-market delays since it sometimes takes a silicon factory a month or more to

produce a new set of ASIC chips. While advanced features, such as complex quality of

service routing, identification of upper layer flows, gathering of accounting information,

or access control filtering, still requires traffic to be processed in software the

performance benefits of the ASIC-based architecture is reduced. [12]

The demand for performance has given rise to the hybrid configuration, such as,

network processors. The Intel’s IXP1200 Network Processor family is an example of the

new approach. The IXP1200 hardware is made up of one core processor the StrongARM

and six RISC processors or Microengines that it manages. Since both the StrongARM

and the Microengines are software driven and programmable this makes the development

process faster. The combination of specialized machine instructions for traffic processing

and its’ ability to use parallel processing with the Microengines makes it possible to offer

high performance along with versatility for change.

The IXP1200 contains a StrongARM core and six independent 32-bit RISC data

engines (Microengines), as well as SRAM, SDRAM, PCI and IX bus controllers. The

3

operating frequency for the PCI bus is up to 166 MHz, where as, the IX bus operates

between 166 and 232 MHz. The performance of the processor is advertised to be 3

million packets per second (3 Mpps), which is 1.5 Gbps (3000000 * 64 bytes * 8 bits).

The combination of six ASIC-based Microengines, one programmable StrongARM

processor, both SRAM and SDRAM, and a dedicated IX bus interconnecting all of its

components has produced a single network-processing chip that is both programmable

and very efficient. [11]

Synchronous Random Access Memory (SRAM) is a type of RAM that holds its

data without external refresh for as long as power is supplied to the circuit. This is

contrasted to dynamic RAM (DRAM), which must be refreshed numerous times per

second in order to hold its data contents. SRAMs are used for specific applications

within the PC, where their strengths outweigh their weaknesses compared to DRAM.

SDRAM incorporates new features that allow it to keep pace with bus speeds as high as

100 MHz. It does this primarily by allowing two sets of memory addresses to be opened

simultaneously. Data can then be retrieved alternately from each set, eliminating the

delays that normally occur when one bank of addresses must be shut down and another

prepared for reading during each request. [19]

Network Processors are designed to take advantage of the inherent parallelism in

the packet processing programs. Most of them provide additional/replicated resources on

the chip in order for packets to be processed in parallel. For example, the Intel IXP1200

network processor has six Microengines on the chip. These are simple RISC processors

that run independently and can accelerate functions like hashing, calculations, lookups,

and so on.

Network processors have been used as an attractive alternative to pure PC-based

routers. Even though their architectures can be used to support network monitoring, a

newer much more performance-oriented architecture is needed.

B. THE INTEL IXP1200 NETWORK PROCESSOR
This section will briefly introduce the architecture of the IXP1200, derived from

the Intel IXP1200 Network Processor Family Hardware Reference Manual. An

exhaustive hardware specification can be found at Intel’s website,

4

http://www.intel.com/design/network/products/npfamily/index.htm. Figure 1 is provided

as a reference while discussing IXP1200 configuration.

Figure 1. Intel IXP1200 Diagram (From Ref 11)

1. Memory
The IXP1200 has three types of memory resources available to the programmer:

SRAM, SDRAM, and Scratchpad RAM. These memories vary in latency, size, and

bandwidth. SDRAM memory is typically used for storage of packet data and very large

tables; whereas, SRAM memory is used for table lookups where low latency is very

important. Scratchpad RAM, being internal to the IXP1200, is smaller but with very low

latency and is most often used for inter-process communication, and shared semaphores

or counters to enable Microengines to share resources. [11]

a. SDRAM
 The SDRAM unit is for interfacing to external SDRAM via a 64bit x

116Mhz bus. It shares an intelligent memory interface that can be accessed by the

StrongARM, Microengines, and other devices on the PCI bus. It is a flexible interface to

standard, low-cost SDRAMs that are capable of moving blocks of data between the

SDRAM and the Microengines by using the IX Bus Unit, or devices on the PCI bus. [3].

5

b. SRAM
 The SRAM unit interfaces to external SRAM via a 32bit x 116Mhz bus. It

shares an intelligent memory interface accessible by the StrongARM and the

Microengines. It provides a flexible interface to standard pipeline and flow-through.

SRAMs are capable of moving blocks of data between the SRAM and the Microengines

by using the IX Bus. [4].

2. StrongARM Core Processor
The core processor for the IXP1200 is a 32-bit StrongARM RISC processor. It

may be used in two different ways depending on the application and host CPU that is

available. In configurations where there is no host processor or the host processor is

limited, the StrongARM would act as the main processor running a Real Time Operating

System, performing system maintenance functions, as well as, running as the core

processor. Alternately, the StrongARM can leave the system maintenance processing to

the host processor of the CPU, acting as only the exception processor, performing higher-

layer processes for the Microengines. The latter is the configuration that is used for this

paper. The StrongARM runs a mini-kernel and executes routing protocols, while the

Microengines do the fast-path packet processing. [11]

The operating system functions of the StrongARM boot from Flash memory over

the SRAM interface. The StrongARM can then load the Microengines with their own

programs. The StrongARM communicates with the Microengines via shared registers

and a shared on-chip Scratchpad RAM. It also has the ability to enable or disable any of

the Microengines or any of the Microengine threads. The StrongARM can make changes

to the Microengine instruction store at any time by disabling the Microengine, and

writing to their instruction store and then restarting that Microengine. The granularity of

the StrongARM’s ability to manage the Microengine reaches down to the individual

threads running on the Microengines. [11]

3. Microengines
The six Microengines operating at 232Mhz are compact and efficient RISC

engines that are used for any function requiring high-speed packet inspection, data

manipulation, and data transfer. These 32-bit engines, with a 5-stage execution pipeline

and a large (256) register set, are fully programmable. The Microengine is designed in

6

such a way to provide multi-threaded operations enabling each Microengine the ability to

run up to four threads at the same time. The Microengine runs on a lower language of

assemble code. It is within the Microengines that the speed of processing is achieved.

The StrongARM is much like the manager in a grocery store with the cashiers being the

Microengines. The cashiers handle the majority of the daily tasks in the most efficient

way possible. It is the StrongARM or the manager that handles complex or unexpected

tasks and leaves the Microengines free to take care of other tasks. [11].

4. IX Bus
The IX Bus is the main interface for receiving and transmitting data with external

devices, such as, MAC devices and other IXP1200s. It is 64 bits wide and runs up to

104MHz allowing for a maximum throughput of 6.6Gbps. The Microengines can

directly interact with the IX bus through an IX Bus Unit; so a thread running on a

Microengine may receive or transmit data on any port without StrongARM intervention.

This interaction is performed via Transmit and Receive FIFO queues, which are circular

buffers that allow data transfers directly to/from SDRAM. For the Microengines to

interact with peripherals, they need to query or write to control status registers.

5. Fast Bus Interface (FBI)
 The FBI unit contains several parts that are 1K of memory of 32 bit words on the

scratchpad, a hash unit and the interface to the IX bus which connects the network

interface card to the IXP1200. The memory is divided into two parts the Receive

memory and the Transmit memory. Both receive and Transmit memory act as a buff

between the host computer and the IXP1200. [15]

6. Host Computer
The IXP1200 is contained on a PCI card that is mounted into a host computer.

The IXP1200 card requires that the host computer use Linux 7.2 as its operating system

to enable the IXP1200 card and the host computer to communicate with each other. This

communication is done through the PCI bus which the IXP1200 card is attached too.

When the IXP1200 card is in place, the host computer provides power to run the card,

hard disk space for storage of programs or operating instructions. The PCI interface

provides communication between the host processor and the IXP1200. With the

7

IXP1200 card installed it operates as an extinction of the host computer so all

communication to and from the IXP1200 is done through the host computer. [11]

C. SUMMARY
Network processors started as a central processing unit that used RAM and ROM

to store its operating system and routing tables to maintain connections to the networks.

This very simple system has evolved along with the networks that we have today to a

very ridged system of removing RAM and ROM to designing the programming into

hardware during the manufacturing process of the network processors. Along with using

multiple processors that are programmable to accomplish a single task in parallel while

enabling both speed of processing and programming flexibility.

Intel developed the IXP1200 network processor board that consists of multiple

programmable processors. It is made up of two buses, the PCI bus and the IX bus. The

PCI bus is used for communications between the host computer and the IXP1200 card.

While the IX bus is the bus system on the card providing the communication link

between the components on the card. The card is made up of one master processor, the

StrongARM, which supports six processors the Microengines that run independently. All

are programmable being able to provide both increased network processing speed and the

programmability for change.

The next chapter will cover the functionality of the IXP1200 software and its

installation.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. INTEL’S SOFTWARE DEVELOPMENT KIT AND
INSTALLATION

Intel’s Software Development Kit (SDK), Version 2.0, is made up of a C compiler

Cygwin, which is a command line interface; and VMware, which is a virtual machine that

runs on Windows to support the Linux operating system. More information on VMware

can be found at http://www.vmware.com/products/ or information on Cygwin can be

found at http://cygwin.com/. Within the SDK, Intel provided a GUI called The

Developer’s Workbench that provides help with programming and with the operation of

the IXP1200. These tools are combined to provide complete resources needed for

programming, including a resource of libraries for code reuse, modification, and as a

development environment to assist the programmer.

The Developer’s Workbench is a key component of the SDK that features a GUI

based simulator for the Microengines and hardware of the IXP1200 network processor.

The simulator is used as a test bed for the Microengine code as it is developed. Within

the Workbench there are many pre-developed Active Computing Elements (ACEs)

provided. ACEs are similar to a macro or fragments of code that have already been

developed and tested for functionality and efficiency. These ACEs may be combined to

produce code to be run on the IXP1200. ACEs that are written in C or C++ can be run

directly on the StrongARM. The ACEs must be in the appropriate assembler language in

order to run on the Microengines. This is the main benefit of the Workbench, in that it is

the only available tool to accomplish the task of compiling code for the Microengines.

The process to produce code for the Microengines is to take ACEs that are already

written from the Development Workbench and combine them into a single functioning

piece of code that then is compiled using Workbench into a list file that will be run on the

targeted Microengine.

The Workbench is capable of debugging code using the target hardware or

simulating a packet flow for testing code. The debugger can be used to debug the code to

be run on the Microengines. Within the debug mode there is the option of setting

breakpoints, single step commands, and jumping over a function. Other features of the

Developer’s Workbench are access to a command line window, performance statistics,

10

facilities to save and restore simulation session, memory modify history, data watch

window, and thread history window.

Figure 2. IXP1200 Workbench GUI (Ref 18)

Figure 2 shows a typical window of the Developer’s GUI Workbench. It looks

and acts much like Microsoft’s Visual Studio, but there are many differences because the

target hardware configuration includes one core processor and six supporting processors.

Below are some of the more important parts of the functions of Workbench that will be

described in greater detail

yaimym,i,M ^J»JxJ
_ File E* View Prole« Build Debug Simulation Hardware lools Window Help ^JffJxJ
D^B0 % fc X p|E *v W E= I ^M* IÖ *

frifndef IX_ASL_CAP_H
«define IX ÄSL CAP H

INTEL CORPORA
This software is supp
nondisclosure agreeme
or di sc losed exc ej ■ * 1

Copyright (C) 200 1 Intel Corporat1

Sid: cap.h.v 1.25 2001/06/12 20:27:54 glime

i gh t s Reserved.

lire provides the
ithout the
Doming Packet rings

The Communications Access Processor data stru
messaging portion of the abstract Ace object.
additional overhead of the management of the
or other Packet related activity.

The Cap facility is suitable for use in processes or threads that
wish to take part in the messaging system as an Ace would, but
have not requirement to handle incoming network packets.

The Cap initially provides a Ring to be used to accept incoming
messages from the Object Management System (and other masters?)
which will trigger execution of local Crosscall service
functions. The Cap has the internal ability to get messages to the
object management system.

Functions are provided to initialize the Cap and to destroy
it. The Cap object provides functions to process a single message
and to continuously process messages arriving on the message
rings. Each message is delivered to the processing function
associated with the message ring, intially set to ix_msg_demux().

A tunable paraiueter is availble to control the maximum nuiuber of
Messages that will be processed by the Cap during each Poll. A
default value for this parameter is provided globally within the
system; each Cap can override the value of this parameter locally.

Processes wishing to take advantage of the Cap facility should
use ix_cap_new to create a new Cap object, or should allocate
suitable storage themselves and use ix_cap_init to set up the
appropriate local data areas. The ix_cap_loop function can be
called to enter the long-term service loop, or individual calls to
the ix_cap_poll function can be used to trigger Cap processing in
combination with any other periodic processing required by the

T
W\ action, h

aslh
■jt'iii n' 11

Bufjiuc
bullei.h
bwih
cap.h
classily.h
classinil.h
Common h
condh
conslanls.h
conslanls.uc
Counl-inleinal_h uc
Count, uc
CounlJ ngiessD ispalch.
CounlConliolBlock.h
CounllmpoitVais.h
ciitsecl.uc
Debug_huc
'I'-lllN- I I

diclh
DispalchLoop_h.uc
D ispalchLoopI mpoilVai
diamuc
Egress.huc
element, h
endianuc
eiioi.h
ElheinelEgiess.uc
Elheinellngiess.uc
evenl.h
FaslEgiess_h.uc
Fasllngiess_h uc
Fasll ngiessConliolB loch
FasllngiesslmpoilVaisP

"3

JÜ & "|7~|\Build/i FmdinFiles 1 A FmdinFiles2 /

For Help, select Help->Help Topics on the mam n

11

A. BUILD SETTINGS

Figure 3. Project Workspace

Figure 3 shows the file manager in Workbench. The source files for both the

assembler and the compiler are listed alphabetically in their own file. Source files can be

added by clicking on the project bottom or by providing an include statement similar to

C++. Macro are listed in two files by the name of the macro and by the name for easy

access. One of the benefits of Workbench is that it provides this file of commonly used

12

macros that can be added to the project with minimal effort.

Figure 4. General Build Settings

After assembly code is written, additional settings must be configured to build

and run the program. In Figure 4 there is an example of the window from the

development workbench for the general build settings. It is here that the compiler is told

were to look for the files that are needed to build and compile the code for the project.

Build Settings

General I Assembler | C Compiler | Linker

I

Assembler include directories: X * 4-
AAcommon\dispa(ch_loops\Egress_RoundRobin\ * 1
\ \common\dcpatch IC'OpAEgie:: FitcA

AVVAincludeV
..V.VcommonVdispalch loops\include\
..V\.\adShdude\ "7]

Compiler include direclories: j X * *

Specify the tange of processor revisions on which
you want the linked code to run:

Minimum revision: Maximum revision:

H no limit H

OK Cancel

13

Figure 5. Build Settings Assembler

Within the window displayed in the Figure 5 are the options to assign the root file

and the target list file. The Root file is the much like the main in C++ that the project

will run from many times it is a dispatch loop. The target list file is the place that the

compiler will send the compiled code to be run on the Microengines.

Build Sellings

General Assembler I C Compiler | Linker |

Output lo target list file

FastlnqressMEB3list Q New... Delete

Path of large! list file:

C\eLtnu«IDE-IXP1200Vcygwin\opI\ixasdk\src\microace\proiects\Count_8_l\FastlngressMEB3.list

RoolFie:

| Count_lngressDispat.ch.uc ___|

Preprocessor definitions:

Assembler Options

W Optimize

!~~ Use new register allocator

W Produce debug info

FASTPORT.SPECTACLE_ISLAND.COUNT.USING_WORKBENCH.MICROCODE,DEBUG INGRESS,ME_NUMBE *
R=3._FAST_INGRESS_CONTROL_BLOCK*786388_FAST INGRESS MAC FILTER TABLE=0x80._FAST_INGR ~
ESS P0RT=16. FAST INGRESS SEQ NUM-1, FAST INGRESS FIRST THREAD-8, FAST INGRESS CTXO

^J
Parameters used to invoke assembler; r Edit / Override

uca REVISION_MIN=0 0 -DFASTPORT DSPECTACLE ISLAND DCOUNT -DUSING.WORKBENCH
•DMICR0C0DE-DDEBUG_INGRESS-DME_NUMBER-3-D FAST INGRESS C0NTR0L_BL0CK-786388
■D_FAST_INGRESS_MAC_FILTER_TABLE-0x80D_FAST_INGRESS_PORT-16
-D FAST INGRESS SEQ NUM-1 -D FAST INGRESS FIRST THREAD=8

QK Cancel

14

Figure 6. Build Setting Linker

 Figure 6 contains the decision as to which Microengine will run what list file.

The list file is is shown in the Linker tab (Figure 6). This is how to tells the compiler,

which Microengines will run what list file for the program. It is important to consider

while assigning the list files to the Microengines that you manage resources like memory

and Microengines to reduce bottle neck in the project. The simulator is a very good tool

found within the debugger to find and reduce bottlenecks.

General] Assembler] CCompiler Linker

_ - p: Output to target .uof file

[v I Count_8_l G ig. uof kunnamed>

Path of target .uof file:
_l

C:\eUiurfDE-IXP1200\cygwin\opt\ixasdk\src\microace\pr

Linker options

Select .list files for microengines

Mictoengine 0

Mictoengine 1

Miaoengine 2

Mictoengine 3

Miaoengine 4

Miaoengine 5

l~~ Generate hex '.c' file

f^ Produce debug info

S low! ngressM E B 0. list

S low! ngressM E B1. list

Fasti ngressMEB 2. list

Fasti ngressM EB 3. list

Fid option ■

Fill unused rriaostae
Fill pattern

G Default (OwOOcOQQd;

f* Custom

JKeOOcODD4

Reserved memory segment for variables

Base address Max Size (bytes)

Scratch 0x00000004 OxOOOOOffc

SRAM 0x00000004 Oxfffffffc

SDRAM 0x00000010 OxfffffffO

V Generate head« He

Parameters used to invoke linker:

ucld -u 0 C:\eLinuxlDE-IXP1200\cygwin\opt\ixasdk\src\microace\acieas\Qxrit_8JVSIowlngressMEB0.list -u 1 *
CAeLinuxlDE-IXP1200\cygwin\opt\ixasdk\sr^
CAeLinuxlDE-IXP1200\cygwin\opt\ixasdk\s^
CAeLinuxlDE-IXP1200\cygwin\opt\ixasdk\src\microace\proiectsVCount_8_1\FastlnaessMEB3list-u4 d

UK Cancel

15

B. DEBUGGING CODE
The debugging section of the Development Workbench is a very useful tool. The

debug section provides tool for tracking history of the program as it runs. This history

can be tracked all the way down to each thread that is run at the same time. Other

functions of the debug are command line inter face and a data watch to track variables.

Figure 7. Thread View

Figure 7 is an example of the thread view in the debug mode.

The Thread View window provides a graphic view of the six Microengines and

the four threads that can be run on each Microengine.

Info View provides access to documentation on the Workbench components, such

as, the Development Tools User’s Guide and the Programmer’s Reference Manual.

Figure 8. Thread and Queue History Window

- @J JAS CRC »readi
-] # Chp|<imamed>]

- W MicroengineO
T Thread) (O)
T Thieadl (01
f Thread2(0)
f Thread3(0]

F U Micioergine 1
f Thread4(1|

-f Thtead5(ll
f Thread6|1]
*f Thread7(l|

* ftj Mic*oengine2
• U Miaoenojne 3
- U Miaoenojne4
- U MiaoenojneS

♦II <unnamed> w\ P Threads |p Queues | Customize.. 1 <*!<*! 2311 | ->| Legend... |

Rec Fill 10/100 0(0)

1320 1330 1340
i i i

1350 1360 1370 1380
i i

1390 1400
i i

Xrnit Sched Gig, Odd (5)
—

S™ ' — :
i ! . *-;

" Snm ! i

• *- x i
-• *&>•

i ' .»>» * ' *8nm ' . Srw _ 1
* 1

H SDRAM Priority

llllllllllllllllllllllllllllllllll SRAM Order

SRAM Read

llllllllllllllllllllH IIIIIIIIIIIIIIIHI 1

<J 1 ►

16

Figure 8 is the Tread and Queue History window that provides a view of the

Microengines executing code, making it possible to quickly locate performance

bottlenecks. The threads and queues are displayed on a timeline that represents the

number of cycles executed. The line segments on the timeline change color depending

on whether an instruction is executing, stalled (waiting on resources to complete a task),

aborted, or idle (waiting for a task to be assigned).

Figure 9. Command Line

Figure 9 shows the command line interface. It has two functions, one for

simulation mode and the other for hardware mode. In simulation mode the command is

passed to the simulator, which in turn sends the command and the response back to the

command line window. In hardware mode the command line provides an alternate way

to access the hardware. Some of the commands that it supports are C interpreted

functions, script files and conditional directives.

Figure 10. Data Watch

Data Watch is useful in tracking the value of variables (Figure 10). To view a

particular variable, enter the name of the variable in the Name block of the data watch

window. Data Watch will update the variable when the Microengine or thread execution

has stopped.

Data Watch

Refresh | Add Watch...

Name Value Description

El tfifo_e1 Array of 8 64-bit values {FIFO}

...

17

The network simulator can be used to run new code to compare run times. One of

the nice things about the simulator is that it will produce line graphs of different

simulations for comparison. This should prove very useful in a multi-thread environment

when it is necessary to find code bottlenecks. It also has a very extensive library of tested

code that can support code reuse. The debug section of the SDK can separate each thread

of the program, both graphically and as it steps through the code.

C. INSTALLATION OF IXP1200 CARD AND SOFTWARE
The host machine requires a modified version of Linux 7.2 operating system in

order to run and communicate with the StrongARM. The StrongARM uses a very

limited version of the Linux operating system. The resources available to the IXP1200

are very limited. For this reason, the StrongARM uses the host computer’s hard drive to

store its files. The Linux C compiler is used to compile code to be run on the

StrongARM. Linux, or Cygwin, if a version of Windows operating system is running on

the host, is used to move files from the host machine’s directory to where the

StrongARM can read them.

For the installation of the IXP1200 card and software needed to support the card

refer to Appendix B. Appendix B provides a complete checklist for installing the SDK

Windows operating system and Linux 7.2 with Cygwin.

D. SUMMARY
Intel’s Software Development Kit (SDK) contains a GUI known as the

Developer’s Workbench. This Developer’s Workbench is the key component of SDK

which features a GUI based simulator for the Microengines and the hardware for the

IXP1200 network processor. Its main function is to test the programs it develops for the

Microengines within which are many pre-developed Active Computing Elements

(ACEs). These already proven and tested bits of codes or macros are combined to

produce code to run on the IXP1200. In order for the Ace to run on the Microengine the

Workbench modifies the ACE to an assembler level.

The Workbench is able to debug code using the target hardware and simulating

packet flow for the code being tested. Within this mode there are several options, such

as, setting breakpoints, single step commands, and jumping over functions. Other

important features of the Developer’s Workbench, such as, command line window,

18

performance statistics, save and restore simulation, memory modification, data watch

window, and thread history window. This development tool is set up in such a way to

take a complicated situation and making it simpler with the reuse of code.

19

III. PROGRAMMING PACKET FILTER ON IXP1200

Programming the IXP1200 is substantially different then a typical sequential line

program that has only one processor with which to deal with when writing code. The

IXP1200 is designed to be programmable and multi–threaded, thus able to run tasks in

parallel Additionally, it can run independent from the host computer’s processing unit.

Being programmable allows great flexibility to change or modify operation through

programming. Multi-threading provides the possibility of great processing speed. To

program in this kind of an environment is very complex due to potential memory

conflicts, since more then one processor uses the same memory. Getting the different

processors to work together to complete tasks efficiently is also a challenging task. Intel

has reduced the complexity of coding in this environment with the use of Active

Computing Elements (ACEs).

ACEs are small chucks of code that have been perfected to be run on the

IXP1200. They can be used as building blocks which are assembled to complete more

complex operations. These ACEs have already been tested and perfected for efficiency

and reliability. This makes it possible to assemble ACEs with minimal effort and

resulting in a reliable and efficient product following the paradigm of code-reuse.

There are two categories of ACEs: ACEs and MicroACEs. ACEs are run on the

StrongARM, and solely written in C and C++, while MicroACEs are simply an ACE that

has been compiled to run only on the IXP1200 Microengines. The MicroACEs and

Microengines form the fastest processing path. As noted above, they’re assembled

together or linked together to complete tasks, in this way they work as a team. Each one

has its own function to complete then calls the next ACE which calls the next ACE until

the whole process is complete. Below is more detail concerning the process of creating

code and using ACEs.

A. DESIGNING A PACKET FILTER APPLICATION
In today’s Internet the speed of handling traffic is paramount to being efficient

because of the increased amount of traffic that is present on it. In order to filter packets

to or from the Internet all packets have to go through the filter. If the filtering process is

slower than the routing process, the filter will become a bottleneck. The IXP1200 has

20

two main components on which code is run, the StrongARM and the Microengines. Both

have to be considered when producing code. Both support the use of ACEs in the

process of developing code for the IXP1200.

ACEs are the building blocks that make up the code that runs on the IXP1200

card. In terms of functions there are three types of ACEs running on the StrongARM:

User ACEs, Library ACEs, and System ACEs. User ACEs provide the user interface to

the system. Library ACEs are those provided by the Workbench or Intel to produce

common functions for use within the code. System ACEs implement network interfaces,

protocol, and algorithms. Control ACEs, a subcategory of System ACEs, produce routing

tables.

When dealing with packets, an ACE does three things: it classifies the packet, acts

on the packet or disposes of the packet. An ACE also communicates with other ACEs

through queries. These queries allow each ACE to monitor the status of such things as

traffic, completion of tasks, and memory management.

ACEs encourage modularity, reducing the complexity of code verification and

validation, because an application can be implemented by chaining several existing ACEs

together to achieve the desired functionality. If the ACEs are already debugged and

tested, a programmer can be confident that by using these ACEs the code that is produced

will be both efficient and need limited debugging. Such modularity is possible due to the

Library ACEs, which by using them reduces the duration of the coding process. Another

benefit is that ACEs can be reused in many applications without having to be recreated

from scratch. An example can be seen in the packet filter in Appendix A which was

created with Library ACEs with little difficulty.

When designing an application to run on the IXP1200 it is useful to divide it up so

it will be manageable. One suggestion is to design the different functions and ACEs

along with establishing the packet flow for the application. Producing an integrated

application involves the following general steps.

First, define the functions and packet flows of the ACEs that run on the

StrongARM and MicroACEs that run on the Microengines. This must be accomplished

for each Microengine used by the application. Next, the programmer must determine

which ACEs will be executed by the Microengines and which will be executed by the

21

StrongARM, running as the core processor. At this point a dispatch loop is written to

implement the packet flow within the application. Microblocks are simply a group of

ACEs put together to complete a task or function.

 Dispatch loop configures the group of functions in a Microblock into a processing

pipeline. The dispatch loop along with code in a Microblock is compiled into a single

“.uof” file that will be downloaded to the Microengines to be run as an application. It

then decides how many Microengines to load with each image of the code. This depends

on the port configuration of the application. Each Microengine is able to run four threads

and each 10/100 Mbps port requires one thread. Thus, each Microengine can run four

standard or fast Ethernet ports. However, a gigabit port requires eight threads, which

means two Microengines are required. All of this is done in the Workbench that can then

provide the means to test the program for efficiency. Care must be taken to ensure that

overhead operations are limited to reduce bottlenecks caused by the sharing of resources.

For this reason it is best to limit the use of dividing Microblocks among different

Microengines. [18]

B. MPACKETS AND MEDIA ACCESS CONTROLLER
The IXP1200 network processor card must break down all input packets into 64-

byte Mpackets in order to be used by the IX bus, which is the primary data path for the

IXP1200.

The Media Access Controller (MAC) segments the original packets into Mpackets

and reassembles them upon completion of the filter processing. The first MPacket will

have the label, Start of Packet (SOP), prep ended while the last will have the label, End of

Packet (EOP), appended. An original packet of length 64 bytes or less will have both

labels affixed and be seen by the Microengines as a whole packet. Original packets

longer than 128 bytes will be fragmented such that the first and last MPackets generated

will have the appropriate label affixed, but interior MPackets are unlabeled.

The MAC puts the Mpacket on the IX bus; from there it goes to the Fast Bus

interface (FBI) to feed the Microengine. The Microengine then must reassemble the

original packet from the Mpackets using a buffer in the SDRAM. The buffer holds

sequential Mpackets until an Mpacket is received with the label EOP at which time the

restored packet is complete and can be processed.

22

Figure 11. Flow chart for Mpackets (From Ref 1)

C. PROCESSING PACKETS

The processing of packets can include several Microblocks and, depending on

how they are assigned to parts of the IXP1200 network processor, can have a dramatic

effect on system performance. When assigning Microblocks to Microengines, a single

Microblock should be processed on a single Microengine, due to the added cost of inter-

process communication if the Microblock crosses Microengines. Further, up to four

Microblocks can be processed simultaneously on a single Microengine. More than four

Microblocks on a single Microengine results in extra overhead, as the various blocks

must be scheduled to run according to the limitation of four concurrent threads that are

possible to be run on each Microengine. Running packets of different sizes on the same

Microengine also increases overhead cost as the Microengine has to assemble the

Mpacket packets from the IX bus. It is best to assign differing packet types to separate

Microengines since they must be processed differently. This helps to limit the overhead

involved in the process. [5]

1. Dispatch Loops

Dispatch loops are used to separate different types of packets and control the flow

of packets. Below is pseudo code representing a dispatch loop.

23

This dispatch loop is an endless loop that gets the packet from the input device

(IX bus). It starts a Microblock that checks the packet to see which of three options is

appropriate: 1) drop the packet, 2) send it to a Microblock to be checked again, or 3)

send it to another Microblock to be processed. The second choice of the loop calls an IP

Microblock and then further divides the processing, based on the result of the IP

Microblock, into three more additional choices: 1) drop the packet, 2) send it to a core

component, or 3) send it to an egress Microblock to be processed.

The ingress source block gets a packet from a port and records the input port in a

global register using a dispatch loop macro, and then passes the packet to the Layer 3

Forwarder Block.

The Layer 3 Forwarder Block checks whether the packet is an IP packet, an ARP

packet, or another type of packet. For every IP packet, the Layer 3 Forwarder will

validate the packet. If the packet is invalid, it will be dropped. If the packet is valid but

Whüe(True){

Get next packet from input device(s),

liivoke ingress Microblock;

If (return code ^False){

Drop the packet,

} else if (return code ^= True) {

Send packet to ingress core component,

} else {/*IP packet*/

liivoke IP Microblock;

Ifiretum code ^False){

Drop packet,

} else if (return code ^TrueO {

}else{

Send packet to egress Microblock;

24

has options in the header, is fragmented, or is multi-cast it will be sent to the StrongARM

ACE component of the Layer 3 Forwarder. This communication mechanism is handled

via the dispatch loop and the resource manager. Otherwise, the next-hop MAC address

and output port number will be obtained from the forwarding table. The output port

number is recorded in a global register using a dispatch loop macro. [14]

If the packet is not sent to the StrongARM, then the dispatch loop will queue the

packet for egress. There is one queue per port and the dispatch loop will look at the

output port to determine which queue to use. The egress Microblock removes the next

packet from the queue and sends it out over the appropriate port. [14]

If a packet is sent to the StrongARM, the L3 StrongARM ACE component

processes the packet and sends it to the egress output interface ACE using the bound

target. The egress ACE then sends it down to the egress Microblock using a resource

manager call. Alternatively, the L3 ACE may choose to send the packet back down to

the L3 Microblock using the resource manager based on the criteria set.

D. FILTERING TCP AND UDP
Appendix A contains the packet filter for TCP and UDP packets that will be

discussed below. This packet filtering application has three dispatch loops: Global

Registers, Macros, and Application. The Global Registers dispatch loop supports each

Microblock that sets and accesses the dl_buffer-handle and dl_next_block global

registers. The Macros dispatch loop provides predefined macros that can be used to

perform the following actions: access cached variables, assign input and output ports for

the buffered packet, dispatch a buffered packet by dropping the packet or sending the

packet to a different Microblock group, or follow the transfer of packets between the

Microblock and the core component of a MicroACE. The Application dispatch loop

defines constants and declares registers to be used within the dispatch loop. TCP/UDP

filtering can be implemented by modifying a function with in the Count program, an

example program provided by the IXP1200 SDK. Appendix A shows the modified

function that can be used to implement the TCP and UDP packet. The original Count

function can be found in the Intel Internet Exchange Architecture Software Development

Kit CD 1. The path for this project that was modified is

/opt/ixsadsk/src/microace/project/Count_8_1_2. The only modifications that were made

25

to the project count_8_1_2 was to the Count.uc file, which defines the processing

function being call in the Count_IngressDispatch.uc, the ingress dispatch loop file of the

project.

Below is a line by line narrative of the modified code for Count.uc, as provided in

Appendix A.

1. The application Count defines constants that are to be used in the program.

2. It declares both local and global registers. Global registers are accessible

to other Microblocks enabling inter-process communications. After this is

completed a call is made to include the other functions.

3. Initializes each Microblock in the Microblock group.

4. Starts the packet filter function (the Filter() macro is a modification of the

original Counter() macro).

5. Checks for packets passed down from the core MicroACEs. This is done

by polling the core processor to queue the Microengine.

6. Checks if a packet was retrieved from the queue.

7. Returns the data pointer for the packet’s buffer and handles returns: The

data pointer (into SDRAM).

8. Addition of the pointer to the packet data in SDRAM.

9. Directs the pointer to the correct location to obtain the necessary type of

packet.

10. Allocates four continuous registers and treats them as a one single string.

11. Takes the numeric value that is in the field and places it into the variable

type.

12. Checks to see if it is an IP packet or another type of packet.

13. Branches for IP packet and other types of packets

a. IP packet

i. Allocates eight new registers in SDRAM to store the packet

while working on the IP header

ii. Reads the IP header

iii. Assigns a variable to store the numerical value of the

protocol type in.

26

iv. Reads the value of protocol type and stores it.

v. The variable is read and the loop branches depending on

the Value.

1. Value 6 indicates TCP and is sent out port two

2. Value 17 indicates UDP and is sent out port four

3. Any other value is sent out port one as an exception

b. Ethernet sent to port one.

E. COMPILING AND RUNNING CODE

1. Compiling the Microcode Source Files
The first step is to compile the Microcode source files using the Malefile.win.

This can be achieved using Cygwin on the windows operating system. Cygwin is a

command line interface that is used on the windows machine to manipulate the files in

the Linux format.

From the command line the command echo is used to ensure the $IXROOT and

$CONFIG are correct, such as, “echo $IXROOT and echo $CONFIG”. $IXROOT

should be /opt/ixasdk and $CONFIG should be ARM_BE. If not, the command export is

used to correct them to “export IXROOT=/opt/ixasdk or export CONFIG=ARM_BE”.

Next a change in directories is needed to

$IXROOT/src/microace/aces/tutorial1/ucbuild. This is done with the command “cd

$IXROOT/src/microace/aces/tutorial1/ucbuild”.

Once the directory is correct compile the Microcode to make the .uof files. The

command to compile these sources is “make –f Makefile.win”.

Now getting these .uof file to where the IXP1200 card can read and use them is

necessary. It may be possible to use FTP, but I did not have any luck doing that and used

a copy command on the command line in Cygwin, such as, “scp .uof

root@192.168.0.4:/opt/ixasdk/bin/arm-be*”

2. Compiling Core Component of MicroACE
Another change of directories is needed to

$IXROOT/src/microace/aces/tutorial1/count_ace1 using the command “cd

$IXROOT/src/microace/aces/tutorial1/count_ace1”. Now ensure $IXROOT is

27

/opt/ixasdk, $config is ARM_BE and $IXPSDKROOT is c:/ixp1200. Complete just like

above.

Next in the command line type the command “make” then change directory to

$IXROOT/src/microace/projects/Count_8_1

3. Running the Application
Reboot the host computer in Linux. Then Open a command window on the host

computer the IXP1200 card is remotely accessed from this command window by typing

“cd /opt/ixasdk/enp-2505/bootixp”, next Type “./bootixp” to boot the IXP1200. To check

the status of the IXP1200 to see if it is up and running use the command “ifup” from the

same command window that was used above that should be now the command window

for the IXP1200. The command “ifup” not only relays the IP address, but starts the port

mapper and the debugger. The StrongARM of the IXP1200 needs to know were to

access its files from the host computer this maybe done by using the terminal window of

the IXP1200 card. The mount command is used to achieve this by configure the

StrongARM to retrieve its code by entering the command, “mount –tnfs <host IP

address>:/opt/ixasdk/bin/arm-be mnt”. Then change to directory mnt. At this point the

application is ready for use. To start the new project the command is “./ixstart <your

config file>.

The configuration file is what the StrongARM uses, while run from the ixstart.

The configuration file has all the parameters that are needed to run the project. These

parameters consist of were and what .uof file are to be loaded onto which Microengine

for the project. With in the parameters or configurations can be changed things like the

number of ports and IP address that are available to the IXP1200 card. Theoretically a

programmer can make simple changes to the congregation file to modify the project by

assigning new .uof file that are already compiled.

28

F. SUMMARY
Programming the IXP1200 involves many components. The Windows

environment supports the Intel’s Development Workbench and allows the management

and debugging of Microcode. The Linux environment allows the programming of core

processor the StrongARM, while providing an interface with hardware. There are many

variables involved to succeed: hardware must be connected correctly so compiled c and

Microcode executables can be loaded, and the configuration file correctly set for the

program to finally run on the IXP1200 card. To run the IXP1200 effectively the

programmer has to consider the use of multiple threads running at the same time in order

to manage memory and deadlock that can be created in the environment. This chapter

presented the steps and modifications needed to implement a TCP/UDP filtering function

on the IXP1200.

29

IV. CONCLUSIONS AND RECOMMENDATION

Network processors started as central processing units using basic RAM and

ROM to store its operating system and routing tables to maintain connections to the

networks. Over time network processors have evolved, such as, Intel’s newly developed

IXP1200 network processor card that consists of multiple programmable processors. It

contains two buses for communications, the PCI bus talks between the host computer and

IXP1200 card while the IX bus is the link between components on the card. The card has

one master processor, the StrongARM, which supports six processors the Microengines

that run independently. All are programmable and are able run parallel processing which

has the ability to increase network processing speed and be programmable for change.

The Developer’s Workbench is the key component of Intel’s Software

Development Kit which features a GUI based simulator for the Microengines. Its

purpose is to test and developed programs for the Microengines which contains pre-

developed, proven code known as Active Computing Elements (ACEs). Because of

ACEs the IXP1200 is able to run tasks in parallel. This is one way it differs from the

typical sequential line program

The IXP1200 card is a very complex piece of equipment that requires precise,

detailed instructions to install; as well as the process of creating and changing preexisting

programs to run on the IXP1200 card. Tools, such as, the Developer’s Workbench

provided by Intel makes it possible to take preexisting code and with simple

modifications produce good running code for a specific task by using code reuse. The

IXP1200’s ability to reuse code worked quite well when modifying Intel’s count program

into a packet filter for TCP and UDP.

There were problems that arose because of the complexity of the IXP1200

system. Below is a list of problems that were discovered and recommendations.

In today’s world of security and numerous upgrades to operating systems,

difficulties arose between the two different operating systems in their ability to talk.

Intel’s answer to making the systems talk was FTP. In my research, I was unable to

achieve this function in the development process and had to come up with other options

like copying files from one IP address to another IP address.

30

The IXP1200 card 9 pin serial connector uses COM1 for communications to the

host PC, therefore it can cause conflicts with Windows mouse. This conflict arose with

Windows 2000 which checks for new hardware at startup and periodically thereafter.

During this check, Windows assumes that the connection on comport one is a serial

connection for a mouse. The IXP1200 card uses COM1 as its COM port and if the

connection is changed to COM2 or another serial connection the card will not boot

correctly.

After performing updates for Windows 2000, Cygwin encountered errors when

starting the program and would not continue running. To correct this problem required

that all of the SDK be removed before reinstalling Cygwin. Due to the fact Windows

sees Cygwin as part of the SDK; therefore, not allowing it to be removed and reinstalled

by itself.

One should not recompile the grub-1-0.src.rpm provided by the Intel installation

disk. There is an error in the file that destroys the boot file for Windows 2000, which

makes it impossible to boot Windows. If this file was recompiled, when starting

Windows the following message would appear: “Windows 2000 could not start because

the following file is missing or corrupt: <windows 2000 root)\system32\ntoskrnl.exe.

Please re-install a copy of the above file”. For this reason VMware cannot be installed.

Further research revealed that possibly using Windows NT version 4 vice Windows 2000

may fix this problem. Note: There are many versions and configurations of IXP1200 and

SDK out on the web which adds to the confusion of finding the answer to fix this

problem.

While installing Windows 2000 on top of Linux there’s a possibility of losing the

grub file, but there is an uncomplicated fix for this. In Linux command window type

“grub”, enter “root(hd0,1)”, then enter “setup”. This will set the grub file back to the

default.

When the kernel for Linux 7.2 is recompiled to support the IXP1200 it limits the

function of the original kernel. Problems were encountered with mounting the A drive or

floppy. To solve this two versions of Linux were ran, the original 7.2 and the upgraded

7.2 version for IXP1200.

31

There are immense possibilities for IXP1200 in the future with the ability of

parallel processing and being able to program in a timely manner with the use of code

reuse within Intel’s SDK. The problem is making people aware of the IXP1200 and

developing a foundation of knowledge to perfect new beneficial uses for it.

My recommendation is to first create a stable platform of computers or computer

lab for the IXP1200 and then provide a class for programming the IXP1200. This class

would expose more students to IXP1200 thus, creating more interest in it and

subsequently, increasing the knowledge base for the IXP1200 card.

By creating this lab and giving the students a base at which to start from would

expedite the learning process and any further research to be done with the IXP1200.

Only with increased exposure will the true potential for the IXP1200 card be reached.

The IXP1200 possess the ability to be programmable. Along with its six Microengines’

ability to each run four continuous threads in a parallel processing nature, the possibilities

are unlimited with the versatility and the speed it can provide.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

APPENDIX A. TCP AND UDP PACKET FILTER

#ifndef _Filt_

#define _Filt_

#include "stdmac.uc"

#include "field.uc"

#include "xbuf.uc"

#include "endian.uc"

#include "ip.uc"

#include "Buf_h.uc"

#include "CountControlBlock.h"

#include "Count-internal_h.uc"

#include "Debug_h.uc"

//888

// #include "FiltImportVars.h" is the header file that has the variables for filter.

//888

#include "FiltImportVars.h"

#macro Filter_Init()

#endm

//88

// Filter is the name of the macro being called from the dispatch loop

//88

#macro Filter()

//88

// Description:

// .local assigns local variables to be used in this dispatch Loop.

34

//88

.local input_port exception_code stats_addr data_ptr data_offset type

expected_type

//88

// Description:

// This macro is used to obtain the port on which the packet being processed

// was received. Valid range is 0 to 255.

//88

 DL_GetInputPort[input_port]

//88

// Description:

// Assigns a place in memory for stats addr to track the number of packets

//88

 immed32[stats_addr, _Filt_STATS_BLOCK]

//88

// Description:

// Increments stats_addr for each packet that is taking in from the input port

//88

 Filt_IncrementPacketFilter[stats_addr]

//88

// Description:

// This macro returns the data pointer for the given buffer handle returns:

//The data pointer (into sdram)

//88

 Buf_GetData(data_ptr, dl_buffer_handle)

35

//88

// Description:

// This macro is used for the purpose of obtaining the offset of the packet

data from the starting point of the packet buffer. This is combined with

Buf_GetData to obtain the pointer to the packet data in SDRAM.

//88

 DL_GetBufferOffset(data_offset)

//88

// Description:

// This macro is used by the alu to direct the pointer to the correct location to

// obtain the type of packet.

//88

 alu[data_ptr, data_ptr, +, data_offset, >>3]

//88

// Description:

// ???

//88

 Debug_Assert(data_offset & 0x7 == 0)

//88

// Description:

// Allocates four continuous registers and treats them as a one single string

//88

 xbuf_alloc($$l2_header, 4)

//88

// Description:

 Instruction which reads the first two quad words from SDRAM starting at

data_ptr. The destination is the continuous registers that are allocated.

36

 The ctx_swap value is a flag to the Microengine to swap this thread out

until this memory request is satisfied.

//88

 sdram[read, $$l2_header[0], data_ptr, 0, 2], ctx_swap

//88

// Description:

// Instruction that takes the numeric value that is in the field and places it

into the variable type.

//88

 xbuf_extract(type, $$l2_header, 12, 0, 2)

//88

// Description:

// Instruction that places a variable with a constant value in the register

expected_type.

//88

 immed32(expected_type, ETH_TYPE_IP)

//888

// Description:

// Instruction that frees up the register $$12_header

//88

 xbuf_free[$$l2_header]

//88

// Description:

// Instruction that uses the ALU subtract type from expected_type answer

places is placed in br!

//88

 alu[--, type, -, expected_type]

37

//88

// Description:

// Instruction checks to see if it is an IP or Ethernet. A 0 indicates a Ethernet

packet which makes the program jump to the label mepass.

//88

 br!=0[mepass#]

//88

// Description:

// Instruction allocates eight new registers in SDRAM ($$ip_header) to be

used to work on the IP header

//88

 xbuf_alloc($$ip_header, 8)

//88

// Description:

// Instruction reads the header of the IP packet into the register $$ip_header.

The sig_done value is a flag to the Microengine to swap this thread out until this

memory request is satisfied.

//88

 sdram[read, $$ip_header[0], data_ptr , 1, 4], sig_done

//88

// Description:

// Instruction wait for the read of the IP header.

//88

 ctx_arb[sdram]

//88

// Description:

38

// Assigns a variable proto

//88

 .local proto

//88

// Description:

// Instruction that takes the numeric value that is in the packet type field and

places it into the variable proto.

//88

 xbuf_extract(proto, $$ip_header, 15, 0, 1)

//88

// Description:

// Instruction assigns the value of 17 to UDP and 6 to TCP

//88

 immed32(UDP,0x17)

 immed32(TCP,0x6)

//88

// Description:

// Instruction checks to see if proto is TCP or UDP and then jumps to the

appropriate place.

//88

 if (proto == TCP)

 br[TCP#]

 elif (proto == UDP)

 br[UDP#]

 else

 br[exception#]

#endif

39

 .endlocal

//88

// Description:

// Label for TCP packet

//88

TCP#

//88

// Description:

// Sets the out going port to port two

//88

DL_SetOutputPort[2]

//88

// Description:

// Resets port two to be used after the packet is sent.

//88

immed[dl_next_block,1]

//88

// Description:

// End of the jump or br

//88

br[end#]

//88

// Description:

// Label for UDP packet

//88

UDP#

40

//88

// Description:

// Sets the out going port to port four.

//88

DL_SetOutputPort[4]

//88

// Description:

// Resets the port four to be used after the packet is sent.

//88

immed[dl_next_block,1]

//88

// Description:

// End of the jump or br

//88

br[end#]

//88

// Description:

// Labels mepass for the first check if ethernet packets sent packets out port

one

//88

mepass#:

 immed[dl_next_block, 1]

 DL_SetQueueNum[input_port]

 br[end#]

//88

// Description:

41

// Label for exception to handle everything that is not covered by the other

checks then sends in out port one

//88

exception#:

 immed[dl_next_block, IX_EXCEPTION]

 immed[exception_code, 5]

 DL_SetExceptionCode[exception_code]

 DL_SetQueueNum[input_port]

//88

// Description:

// Label for end that frees up $$ip_header and restarts the loop port one

//88

end#:

 xbuf_free[$$ip_header]

.endlocal

//88

// Description:

// End of the macro

//88

#endm

#endif

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

APPENDIX B. INSTALLATION OF HARDWARE AND
SOFTWARE

A. SYSTEM REQUIREMENTS
 This setup is for a dual boot system operating on Red Hat 7.2 and Windows 2000.

This development environment is a combination of Windows 2000 and Linux platform or

Cygwin for Linux environment on the Windows 2000 operating system that provides the

following list of tools:

1. Microengine tool chain contains an embedded Linux version of the IXP1200

Microengine Development Environment, running on Windows 2000. The

IXP1200 Card has to have the modified version of Linux 7.2 to run, but

Microengine Development Environment allows the user to simulate code and

debug before running the code on the IXP1200 card in the Linux operating

system.

2. StrongARM tool chain is a GNU/CPP cross-hosted tool chain that can be

called from a command shell or through a Embedded Linux IDE, which

allows the user to develop and debug code running on the StrongARM on the

IXP1200.

3. Omni NFS Sever makes directories located on Windows platform visible to

application code running on the StrongARM.

4. Linux IDE supports application development, kernel debugging and device

driver development.

 The Linux side of the system needs Red Hat 7.2 to be modified for a host

operating system for the IXP1200 board. Earlier and later versions of Red Hat will not

support the IXP1200 card.

B. INSTALLATION OF WINDOWS 2000

1. Begin by formatting half of the hard drive space for the windows operating

system then install Windows 2000.

44

2. From windows control Panel choose Users and Passwords

Figure 12. User and Passwords

2.1 Add the user ixa and remember the password

3. Log off to install Linux

C. INSTALLATION OF RED HAT 7.2 FROM CD ROM
1. Acquiring Red Hat 7.2

1.1. This can be down loaded from a web sight at URL

http://six.retes.hu/download/redhat/. The files must be burned to a disk so that

they can be used as a boot-disk during the installation process.

Note: The Windows operating system must be installed first in order to use

the grub function.

2. Insert the number one disk into the CD drive.

Note: The boot directory in the BIOS may need to be reset. To get to the

BIOS there will be an option as the computer boots up. (CTRL-ESC, F1,ALT-

Tab)

3. Select the language of the user of the computer

3.1. Click Next

4. Select model of keyboard to be used

4.1. Click Next

Cameras

Users and
Passwords

45

5. Select model of mouse to be used

5.1. Click Next

6. A welcome window will appear

6.1. Click Next

7. Select Installation Type “Custom”

7.1. Click Next

8. Choose “Manually Partition with Disk Druid” to partition the hard drive

8.1. Click Next

9. Click on Free space

9.1. Click on New

10. Click on Mount Point arrow and select “/boot”

11. Click on File system Type arrow and select “ext2”

12. Click on Size (MB) block and enter “50”

13. Select Fixed Size

13.1. Click OK

13.2. Note: Warning click “add anyway”

13.3. Click on New

14. Click on File system Type arrow and select “swap”

15. Click on Size (MB) block and enter “512”

16. Select Fixed Size

16.1. Click OK

17. Click on New

18. Click on Mount Point arrow and select “/”

19. Click on File system Type arrow and select “ext2”

46

20. Click on Size (MB) block and enter “4096”

21. Select Fixed Size

21.1. Click OK

22. Click on New

23. Click on Mount Point arrow and select “/home”

24. Click on File system Type arrow and select “ext2”

25. Click on Size (MB) block and enter “50”

26. Select “Fill to Maximum allowable size”

26.1. Click OK

26.2. Click Next

27. Select use GRUB as the boot loader

28. Select install Boot Loader record on “/dev/had Master Boot Record (MBR)

29. Enter “Windows 2000” for Boot label box

29.1. Note: This label is for the operating systems in the GRUB boot loader.

There is also the option to pick a default operating system by clicking the box to

the left of it at the bottom of the screen.

29.1.1. Click Next

30. No password is needed on the GRUB

30.1. Click Next

31. Do not configure the Network

31.1. Click Next

32. Select No firewall

32.1. Click Next

33. Select Language support

33.1. Click Next

47

34. Select Time Zone

34.1. Click Next

35. Enter root password twice

36. Add a user “ixa

36.1. Click “Add”

36.1.1. Enter User “ixa”

36.1.2. Enter Password “ The same one from Windows “

36.1.3. Enter Confirm Password

36.1.3.1. Click “OK”

Note: Under Account Names your user should appear.

36.1.4. Click Next

37. Authentication Configuration

37.1. Click Next

38. Package Group Selection ensure the selection at least:

38.1. NSF File Server

38.2. Software Development

38.3. Kernel Development

38.4. Windows Compatibility / Interoperability

Note: Remember the size of the installation on the bottom of the screen

38.4.1. Click Next

39. Select Video Configuration

39.1. Click Next

40. This is the point at which the installation will begin.

40.1. Click Next

48

41. Insert Disk two

41.1. Click OK

42. Select box to make a boot disk

42.1. Click Next

43. Select Monitor

43.1. Click Next

44. Select Color Depth “High Color (16 Bit)”, Screen Resolution “1024x768”,

“Graphical”

44.1. Click Next

D. UPGRADING RED HAT LINUX KERNEL
1. Log into Linux as root

2. Insert CD “IXA EDU

3. Using a command window type “cd /mnt/cdrom/Host_Linux_upgrade”

4. Using a command window type “rpm –recompile linux-24-17src.rpm”

5. Reboot to check if system is intact

6. Edit the /boot/grub/grub.conf

Replace with sample below

grub.conf generated by anaconda

Note: It is not required that grub be rerun after making changes

to # this file

NOTICE: There is a /boot partition. This means that

all kernel and initrd paths are relative to /boot/, eg.

root (hd0,1)

kernel /vmlinuz-version ro root=/dev/hda3

initrd /initrd-version.img

49

#boot=/dev/hda

default=0

timeout=10

splashimage=(hd0,1)/grub/splash.xpm.gz

title Red Hat Linux (2.4.7-10)

 root (hd0,1)

 kernel /vmlinuz-2.4.7-10 ro root=/dev/hda3

title Red Hat Linux (2.4.17)

 root (hd0,1)

kernel /vmlinuz-2.4.17 ro root=/dev/hda3

E. INSTALL IXA SDK WORKBENCH FOR WINDOWS
1. Insert “Intel Internet Exchange Architecture Software Development Kit CD 1

Version 2.01 Volume II CD 1”

2. Run“cd:\workbench\setup”

Figure 13. Setup Icon

3. There will appear an information label about IXP1200Portmapper and Windows

NT

50

Figure 14. Information Window

3.1. Click OK

4. Use Alt-Tab to close all other program

Figure 15. Information Window

4.1. Click Next

5. License Agreement

Figure 16. License Agreement

5.1. Click Yes

6. Setup location should be Drive “c:\IXP1200

Figure 17. Information on Path

6.1. Click Next

7. Select all components to install

I.JI-. IT

^ nw^t.«Ml""-««-*< Pw..»»l»ac<fc*Urtot-

-CiMMi'MnU>«

■ B-* | I« | B> |

51

Figure 18. Select Development Kit Components

7.1. Click Next

8. Select program folder to place the startup icons in

Figure 19. Select Program Folder

8.1. Click Next

9. Install IXP1200 PortMapper service

Figure 20. Question

9.1. Click Yes

Select IXI» 1X00 Development Kit t omponenl«. *!

-*r

Select the components you want to install, clear the components
you do not want to install.

Unit v Documentation

•] Shared DLLs

I SDRAM Me •] Binary tiles and executables

 ^ÜlL /] SA1 Core Libraries

I SRAM MO _ Description

This component contains the sample
Microcode files and IND files.

Space Required:

Space Available:

d

325908 K

746672 K

U-'nJmrr-nli'

Setup will add program icons to the Program Folder listed below.
You may type a new folder name, or select one from the existing
Folders list. Click Next to continue.

PCI B-j pIogram Folders:

Existing Folders:

»■»mill.»
Administrative Tools
Microsoft Office Tools
Startup

V The IXP120O PortMapper is required when interfacing the IXP1200
Transactor to the Remote Foreign model or Debugging IXP1200
Hardware.
Do you want to install the IXP1200 Portmapper service?

4> The installation rs about to install IXP120Q Portmapper Service.
If you choose to install this service please make sure to disable
any other portmapper services. These services can be found
under Control Panel Services. Faiure to do so can result in
unpredictable results!

OK

52

Figure 21. Information

9.2. Click OK

10. There will be a prompt for a key

Figure 22. Question

10.1. Click Yes

Figure 23. Enter Password

10.2. Click Next

Figure 24. Question

10.3. Click No

11. Install Adobe Acrobat Reader

Figure 25. Information

11.1. Click OK

■ ■

You have selected to instal Intel KP120O Mfcro Engine C compier. If you d
days free trial.The Icense key can be obtained from
http://devetoper .intd.cc^design/netvK^ptoo\icts/r^anidy/index .htm

Once you have obtained the license key, enter it in the next dialog. Would you Ifce to enter the license key now?

Please enter Ihe password.

A passwoid is required to run Micro Engine C compiler.

f pci a«

.
PCIBu

Unit 1 Password: |

«4 SDRAM ME
Unil

3» SHAM Mo
Unit 'I'

IXP
Mi?

:
■Hh

1200
work Proce

• Bad | Next> | Cancel

:

You will need to install Adobe Acrobat reader in order
to view the IXP1200 documentation. The Acrobat reader
installation executable is supplied on the IXP 1200 Network
Processor CD or can be downloaded from the adobe website,
http://www. adobe.com/products/acrobat/readstep. html

53

12. Workbench Installation Complete

Figure 26. Information

12.1. Click OK

F. CYGWIN SETUP
1. Install Cygwin

Figure 27. Cygwin Install

1.1. Click Next

2. Cygwin Install from Local Directory

Figure 28. Setup Options

2.1. Click Next

3. Local Package Directory

Figure 29. Directory Location of Cygwin

3.1. Click Next

<?> Workbench Installation Complete: Starting Cygwin Setup

Cygwin Setup x

c Cygwin Net Release Setup Ptogtarn

Setup exe version 2.29

Copyright (C) 2000 Red Hat Inc

http: //sources, redhat. com/cygwin/

||N—i Cance

c C Download from Internet

<"" Install fiom Internet

'• Install from Local Direct» j»

Next -->

\ i Local Package Directory Browse...

lEANT SDK

Cancel | <•- Back Next ■-■

54

4. Setup Configurations

Figure 30. Setup User Options

4.1. Select Text File Type: Unix

4.2. Select Install for: all

4.3. Click Next

5. Select Packages to Install

Figure 31. Component Options

5.1. Click fcs to skip the package

5.2. Skip IXA_SDK

5.3. Skip IXA_ambe_toolchain

5.4. Skip IXA_bincomps

5.5. Skip IXA_executive

5.6. Click Next

Lygwin Setup xJ

Select install root directory Btowse...|

|C7eLinuxlDE-IXP12007cygwin

Default Text File Type: C DOS (* Unix

Install For: ^ Ali C Just Me

<-- Back Next --> Cancel

ICygwin Setup *l

c Select packages to install Prev I Curr | Exp | Ful/Part

Current New Src? Package *
©Skip njo IXA SDK

©Skip m'.i IXA armbe toolchah

©Skip m'.i IXA_bincomps

©Skip m'.i IXA executive

©20010129 D ash
©213 D autoconl

© 1.4-3 □ automake

© 204-?a □ bash

©20001221-1 □ binutils

©1.28-1 □ bison

©:: □ byacc

© 1.0.1-6
A i n

□
r~i

bzip2

-1
0 = cfick to choose action, (p) previous version, (x) = experimental

<-Back IT le<t-> | Cancel |

55

6. Short Cuts

Figure 32. Icon Options

6.1. Click Next

7. Installation Complete

Figure 33. Installation Complete

Cygwln Setup

c
W Create Desktop Icon

W Add to Start Menu

-Back i Next--> Cancel |

56

G. INSTALLING OF IXP1200 CARD
1. Inspect the card for cracks or damage

Figure 34. IXP1200 Card Inspection

2. Remove two expansion slot plate covers

Card slot for ENP-2505

Serial 3 Pin

57

Figure 35. Mother Board

3. Install the three pin connector for the serial cable

Figure 36. IXP1200 Three Pin Cable Connector

4. Install ENP-2505 card in the open slot

Serial 3 Pin

Three pin
connector

58

Figure 37. IXP1200 Card Installed

5. Install serial nine pin cable in the back of the PC

Card in the PC

Serial cable on the back of the PC

59

Figure 38. Connection of Serial Cable

H. INSTALLING LINUX STRONGARM DEVELOPMENT
1. Log into Linux as root

2. Insert CD disk 1 “Intel Internet Exchange Architecture Software Development Kit

CD 1 Version 2.01 Volume II CD 1”

3. Open a command window

4. Type “cd /mnt/cdrom/rpms”

4.1. Enter

5. Type “rpm –i ixa.sdk-2.01.D-fcs.i386/.rpm”

5.1. Enter

6. Type “rpm –i ixa.executive-2.01.D-fcs.i386.rpm”

6.1. Enter

7. Type “rpm –i armbe-v4b-fcs.i386.rpm”

7.1. Enter

8. Type “rpm –i ixa.binaries-2.01.D-fcs.i386.rpm”

8.1. Enter

9. Modify/ect/profile to make a path and environment variables permanent. To obtain

access to the GNU tool chain, IXA-specific utilities and compilers the file

“/etc/profile” must be modified

10. Open “/etc/profile”

10.1. Replace /etc/profile with text below

/etc/profile

System wide environment and startup programs, for login setup

Functions and aliases go in /etc/bashrc

Path manipulation

60

if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/sbin" ; then

 PATH=/sbin:$PATH

fi

if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/usr/sbin" ; then

 PATH=/usr/sbin:$PATH

fi

if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/usr/local/sbin" ;

then

 PATH=/usr/local/sbin:$PATH

fi

if ! echo $PATH | /bin/grep -q "/usr/X11R6/bin" ; then

 PATH="$PATH:/usr/X11R6/bin"

fi

No core files by default

ulimit -S -c 0 > /dev/null 2>&1

USER=`id -un`

LOGNAME=$USER

MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`

HISTSIZE=1000

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then

 INPUTRC=/etc/inputrc

fi

IXA SDK path setting

61

if ! echo $PATH | /bin/grep -q "/usr/local/armbe/bin" ; then

PATH= "$PATH:/usr/local/armbe/bin"

fi

if ! echo $PATH | /bin/grep -q "/opt/ixasdk/bin" ; then

fi

IXROOT="/opt/ixasdk"

CONFIG="ARM_BE"

export USER LOGNAME MAIL HOSTNAME HISTSIZE

INPUTRC IXROOT CONFIG

for i in /etc/profile.d/*.sh ; do

 if [-r $i]; then

 . $i

 fi

done

unset I

I. ENP-2505 SOFTWARE INSTALLATION
1. Log onto Linux as root

2. Insert CD “IXA Education Workstation”

3. Open command window

3.1. Type “cd /mnt/cdrom/ENP_2505_Driver

3.2. Type “rpm –recompile boot_drv-2.0.-1.src.rpm

4. Reboot to Linux

J. BOOTING UP IXP1200 CARD
1. Open command window

62

1.1. Type “cd /opt/ixasdk/enp-2505/bootixp

1.2. Type “./bootixp

2. Check the Card with a ping command

2.1. Open another command window

2.2. Type “ping 192.168.0.4”

63

LIST OF REFERENCES

1. Erik J. Johnson, Aaron R. Kunze, “IXP1200 Programming”2002

2. Agere Systems Corp., “The Challenge For Next Generation Network Processors”,

April 2001, http://www.agere.com/enterprise_metro_access/docs/challenge_new .pdf,
last accessed 8/10/2004

3. Intel Corp.,”Internet Exchange Architecture Software Developers Kit 2.0 for the

IXP1200 Network Processor”,2001,
http://www.intel.com/design/network/prodbrf/27904101.pdf, last accessed 8/31/2004

4. Intel Corp., “IXP1200 Network Processor Family” December 7, 2001,

http://www.intel.com/design/network/manuals/27830309.pdf, last accessed 8/31/2004

5. Abhijeet A. Joglekar, “High Capacity Network link Emulatio Using Network

Processors”, May 2004, http://www.cs.utah.edu/flux/papers/joglekar-thesis-base.html,
last accessed 8/31/2004

6. Ying-Dar Lin, Yi-Neng, Shun-Chin Yang, Yu-Shen Lin, “DiffServ over Network

Processors: Implementation and Evaluation”, September 22, 2002,
http://www.hoti.org/archive/hoti10/program/Lin_DiffServoverNP.pdf, Last accessed
8/31/2004

7. LynuxWorks, “Big-endian version of BlueCat for Intel IXP1200”May 21, 2001,

http://www.electronicstalk.com/news/lyn/lyn107.html, 8/31/2004

8. “Installing IXP1200”, http://www.cse.iitb.ac.in/~sivak/ixp1200.php, last accessed

8/31/2004

9. Weidong Shi, Indrani Paul, Liang Xiao, “Implementing Real Time packet Scheduling

Algorithms on IXP1200”,
http://www.cc.gatech.edu/classes/AY2001/cs6235_spring/project3/presentations/ixp1
200.ppt, last accessed 8/31/2004

10. Intel Corp., “IXA Education Workstation Setup Guide”, May 2002,

11. INTEL Corporation, Intel IXP1200 Network Processor Family Hardware Reference

Manual, 2001

12. INTEL Corporation, Intel Internet Exchange Architecture, 2001

http://www.intel.com/design/ network/ixa.htm, last accessed not up 01/15/2004

13. Intel Corporation, Intel SDK for the IXP1200, 2001

64

14. Intel Corporation, Intel IXA SDK ACE Programming Framework, December 2001

15. Intel Corporation, Intel IXP1200 Network Processor Family Microcode

Programmer’s

16. Intel Corporation, MicroAce Design Document, 2001

17. Intel Corporation, L3 Forwarder MicroACE Design Document

18. Intel Corporation, “IXA SDK ACE Programming Framework”, December 2001,

19. http://www.cnet.com/Resources/Info/Glossary/Terms/sdram.html, , last accessed not

up October 18, 2004

65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Su Wen, Code CS

Naval Postgraduate School
Monterey, California

4. Professor Gibson John, Code CS
Naval Postgraduate School
Monterey, California

